

NASA Biodiversity, Ecology, and Applied Science Workshop

Remote sensing of productivity, LUE, and stress

Alfredo R. Huete
Faiz Rahman
Elizabeth Middleton
Fred Huemmrich
Kamel Didan
Ramakrishna Nemani
Ranga Myneni
Scott Saleska
Xiangming Xiao

Robert Simmon, Earth Observatory

Controls on productivity (NPP/GPP)

- Fluxes of CO₂ and energy are strongly influenced by temperature; variations in cellular metabolism; and rates of supply of limiting resources (water, nutrients, light,...).
- Both biotic and abiotic factors regulate metabolic rates of individuals, which combine to determine ecosystem flux rates.
- Plant characteristics (roots, litter). soils.
 climate, and disturbance regime influence production.
- Resources and resource regulators

Nemani, Science 2003

Satellite-based Production Efficiency Models

Light use efficiency model:

$$\mathbf{GPP} = \mathbf{\varepsilon}_{\mathbf{g}} \times \mathbf{FPAR} \times \mathbf{PAR},$$

- where ε_g is the light-use efficiency (g C/mol PAR),
- FPAR is the fraction of PAR absorbed by the vegetation canopy,
- $APAR = FPAR \times PAR$.
- Light absorption process (chlorophyll absorbs PAR) and
- Carbon fixation process where absorbed energy is then used to combine water and CO2.

Table 1. A comparison of maximum light use efficiency (ε₀, g C/mol PAR) used in different Production Efficiency Models for deciduous broadleaf forest. T − air temperature scalar; SM − soil moisture scalar; VPD − water vapor pressure deficit scalar; W − leaf water content scalar.

Model	FPAR _{canopy} or FPAR _{chl}	$\varepsilon_{ m g}$	εο
TURC[2]	$FPAR_{canopy} = f(NDVI)$	$\varepsilon_{g} = \boldsymbol{\varepsilon}_{0}$	0.24
GLO-	$FPAR_{canopy} = f(NDVI)$	$\varepsilon_g = \varepsilon_0$	0.146
PEM[1]		$\times T \times SM \times VPD$	
PSN[3]	$FPAR_{canopy} = f(LAI)$	$\varepsilon_g = \varepsilon_0 \times T \times VPD$	0.227
	$FPAR_{canopy} = f(NDVI)$		
VPM[12]	$FPAR_{chl} = f(EVI)$	$\varepsilon_g = \varepsilon_0 \times T \times W$	0.528
CO ₂ flux	NEE and PAR data	deciduous	0.528
site[15]	from Harvard Forest	broadleaf forest	

^{*}LUE is difficult to characterize because it is affected by by both variations in climate, and by biological attributes (LC type, C3-C4,)

Xiao, 2006

Uncertainties

- Satellites can provide consistent measures of vegetation activity with spatial- and temporaldetail at the global scale, which can be linked to ecosystem health, productivity and carbon fluxes,
- There remains large uncertainties in estimating GPP at the canopy level associated with
 - Seasonal dynamics
 - Spatial variation due to climate, soils, and land use (disturbance, management,...)
- Uncertainties associated with coarse scale meteorology, remote sensing variables (LAI, FPAR, VI), and canopy biophysical attributes (land cover type, biome-specific, disturbance history)

Conversion of VI to FPAR?

- Most common method to derive FPAR is through NDVI relationships
- Only PAR absorbed by chlorophyll is responsible for photosynthesis:
 - $FPAR_{canopy} = FPAR_{chl} + FPAR_{NPV}$
- Comparisons of FPAR_{chl} and FPAR_{canopy} would help define to what degree the PEM models are consistent with light absorption process of photosynthesis at the chlorophyll level.
 - Work by Gitelson on estimation of chlorophyll in crops with remote sensing chlorophyll indices
 - Work by Xiao in using EVI to estimate FPAR_{chl} in different temperate/tropical forest types.
 - Non-photochemical dissipation mechanisms

Seasonal Flux and FPAR

Prairie Shidler, Oklahoma, C4 Grassland

Huemmrich et al.

When leaves are stressed they can no longer photosynthesize at normal rates

They must dump excess energy

Xanthophyll cycle

- the de-epoxidation of violaxanthin to zeaxanthin
- a reversible reaction
- dissipates excess energy
- causes leaf reflectance change at 531 nm

FPAR_{canopy}, FPAR_{leaf}, and FPAR_{chl} deciduous broadleaf forest (Harvard Forest)

Zhang et al., 2005, using a radiative transfer model (PROSAIL2) & daily MODIS data

Satellite-based Vegetation Photosynthesis Model (VPM)

Input data for simulation of the VPM model

Air temperature, PAR, Vegetation indices (EVI, LSWI), Maximum light use efficiency (ϵ_0)

Xiao et al. 2004,2006,2006

Validation with Eddy-covariance flux towers

- They have measured fluxes (CO₂, H₂O, heat and momentum) continuously at many primary forest tower sites since 2001.
- These data are powerfully suited for vegetation dynamics and for deriving relationships between carbon fluxes and key driving variables.
- Can test model/remote-sensing estimates of carbon-exchange and seasonality.

• At hour and daily time intervals, ecosystem variables (VI, FPAR, LAI) would not be expected to correlate well with ecosystem fluxes of carbon, water, & energy.

At weekly time scales, these same remote sensing variables become more highly correlated-

Harvard Forest

- 16-day MODIS NDVI with 16-day integrated GPP-
- NDVI and FPAR become insensitive to GPP at peak season

Harvard Forest

• 16-day MODIS EVI with 16-day integrated GPP-/ EVI remains sensitive to GPP at peak season

$$EVI = G \times \frac{\rho_{nir} - \rho_{red}}{\rho_{nir} + C_1 \times \rho_{red} - C_2 \times \rho_{blue} + L}$$

LUE?

MMFS (Deciduous broadleaf forest)

HOWLAND (Evergreen coniferous forest)

Active period means

Rahman et al. 2005 (GRL); Sims et al. 2006 (JGR)

Sims et al. 2006

Sims et al. 2006

NOAA- Advanced Very High Resolution Radiometer (AVHRR) in the Amazon

MODIS EVI transects Cerrado to Rainforest

Rainforest GPP & EVI with modeled GPP (IBIS) at Tapajós

This raises a question about model predictions

- The same model constructs affect both shortterm (seasonal) and long-term variations of C and water exchange,
- but the performance of models at short timescales (where they can now be tested with data) is problematic, hence affecting confidence in reliability of their long-term predictions?

Tapajos Forest

1000 -260 (NS) + 4260*EVI $(R^2 = 0.5)$ 0 0.2 0.4 0.6 8.0 EVI

GPP (kgC/ha/mo)

Santarem Pasture

Basin-wide greening in dry season

October EVI (dry season) minus June EVI (wet season)

Huete, A

Ecotone Rainforests (Transitional)

 Both light and moisture controls on ecosystem metabolism and productivity

Spectral Measurements of Ecosystem Light Use Efficiency

E.M. Middleton & K.F. Huemmrich

GPP =
$$\int \varepsilon(t) fPAR(t) PAR_{in}(t)$$

We want to find ε , the light use efficiency, through remote sensing,

Determining LUE from remote sensing requires both hyperspectral and hypertemporal time series data to observe transient and sustained physiological stress effects on plants.

The Effect of VPD on GEE

- Very high VPDs occurred on the afternoons of June 22-24, causing PARin and GEE to separate.
- When VPD drops for the last few days of this period, GEE and PARin again track each other.

The Approach:

Leaves have multiple responses to stress, including

- 1. Xanthophyll cycle pigments (531nm)
- 2. Solar Induced Fluorescence (690, and 735nm)
- and, over a longer period, reducing the amount of photosynthetic machinery, decreasing chlorophyll concentration (multiple wavelengths)

All of these responses have specific effects on leaf spectral reflectance

Photochemical Reflectance Index (PRI)

PRI uses the narrow-band reflectance at 531 nm and a second reference band to detect changes in the xanthophyll cycle

PRI =
$$\frac{\rho(531\text{nm}) - \rho(570\text{nm})}{\rho(531\text{nm}) + \rho(570\text{nm})}$$

Scaled PRI (sPRI)
 Makes all values positive

$$sPRI = (1+PRI)/2$$

Moisture Stress Creates Changes in Leaf Biochemistry and Leaf Reflectance

- Absorbed Photosynthetically Active Radiation Cannot Be Utilized When Stomata Close.
- As a protective mechanism, leaf xanthophyll cycle responds to dissipate excess energy.
- This process can be detected in leaves through a change in the reflectance at 531 nm.

 $g_c = Ah/C$

ENVIRONMENTAL STRESS

Reduces g_c
(h, T, M, N)

Decreasing g_c reduces ρ_{531}

g_c = stomatal conductance
 A (T, M, N) = assimilation rate
 h = humidity
 C = CO₂ concentration

Changes in PRI are closely linked to xanthophyll cycle pigments

Gamon and Surfus 1999

Stand-level PRI

Diurnal variations in LUE/PRI

(Nichol et al., 2002)

Seasonal variations in LUE/PRI

- Mixed, Siberia
- Pole, SIberia
- △ Scots pine, Siberia
- Bog, Siberia
- Old aspen, Canada
- ▼ Fen, Canada
- Old jack pine, Canada
- · Old black spruce, Canada

Daily APAR and GEP

Prairie Shidler, Oklahoma, C4 Grassland

Temporal Variability of LUE

Spectral Indexes

- Match reflectance and flux measurements in time
- Look at relationships within days and over season
- PRI related to changes in Xanthophyll pigments

BOREAS Sites

LUE calculated from flux tower data and PRI from helicopter hyperspectral reflectances averaged to MODIS bands 11 and 13 are correlated (r = 0.75).

LUE = GEE / fPAR Qin

Data from BOREAS, acquired throughout the 1994 growing season in four boreal ecosystems.

BOREAS Sites

We replaced the weekly ground-measured Fpar with NDVI from the helicopter, collected at the same time as GEE.

MODIS PRI and Aspen LUE

Data from summers of 2001, 2002, and 2003 Backscatter observations only

Summary

- 1. The "LAI FPAR_{canopy} NDVI" paradigm is likely to continue to play a role in modeling of biogeochemical cycles and climate system.
- 2. The "Leaf chlorophyll FPAR_{chl} EVI" framework, a biochemical perspective of vegetation canopy, opens new doors for improving GPP modeling, reducing uncertainty in modeling of terrestrial carbon cycle, and better characterizing leaf phenology.
- 3. The PRI offers much potential in pixel-based assessments of LUE and canopy stress at near real-time time scales,
- 4. Land surface and vegetation water indices are sensitive to changes in leaf water content/ soil moisture, useful in LUE derivations.
- 5. LST provides information useful in constraining C-fluxes (GPP and Respiration)